Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle
نویسندگان
چکیده
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles.
منابع مشابه
Effects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملEndurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure
Objective(s): Previous studies showed that skeletal muscle microcirculation was reduced in chronic heart failure. The aim of this study was to investigate the effects of endurance training on capillary and arteriolar density of fast and slow twitch muscles in rats with chronic heart failure. Materials and Methods: Four weeks after surgeries (left anterior descending (LAD) artery occlusion), chr...
متن کاملThe effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity
Physical activities are associated with increased production of reactive oxygen species. The production of reactive oxygen species is dependent of the intensity, duration and type of activity. Although the physiological amounts of reactive oxygen species are necessary to regulate cell reactions, their excessive production can cause numerous damages to the structure and function of cells and wea...
متن کاملUrsolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملRegulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia.
Although many effects of both acute and chronic hypoxia on the circulation are well characterized, the distribution and regulation of blood flow (BF) heterogeneity in skeletal muscle during systemic hypoxia is not well understood in humans. We measured muscle BF within the thigh muscles of nine healthy young men using positron emission tomography during one-leg dynamic knee extension exercise i...
متن کامل